by Sam Browning
edited by Mike Elliott, Kettle River Canoes
email: artisan@canoeshop.ca

Note: In 2016, I put out a call for someone with a wide-board raised-batten canoe to bring it to my shop in British Columbia, Canada for me to restore and document as part of my second book ̶  “This Fancy Old Canoe”.

I was contacted immediately by Sam Browning. He was about to start restoring one of these canoes.  He offered to take pictures of the project as he worked.  I offered to come to his shop to see the canoe and meet him in person until he let me know he lived in Ely, Cambridgeshire, England.

A few months later, I received a USB flash drive in the mail from Sam. It contained 300 images and a copy of the posts he presented on the ‘Song of the Paddle’ web forum as he documented the restoration.  For my blog (and eventually my book), I have edited Sam’s posts and added a few notes of my own (presented in italics).  For this article, I am presenting the wide-board repairs.

Many thanks to Sam for his excellent work and generous contribution to my book.

*****************

My plank repairs consist of three boards that need to be replaced. There is a small piece missing from the bilge-plank at the stern.  It starts at the last rib and runs to the internal stem.  The second is a bilge-plank on the port side spanning across six ribs and the third is a long bilge-plank on the starboard side spanning across 17 ribs.  My plan is to do the repairs in order from smallest to largest in order to learn on the small repairs and hone the process for the Big One.

Copper canoe nails (16-gauge 1″ or 25 mm long) are harder to get out than tacks on a cedar-canvas canoe as they are driven through a basswood (or Spanish cedar) plank as well as rock elm ribs before being bent over (dubbed) and clinched. The nails aren’t tapered either (apart from the point) and they hold well despite their age.

Getting rid of the heads and punching them through to the inside works best. I use an angle grinder set up with a 24-grit sanding disk to grind off the heads of the copper nails. Care must be taken to ensure that only the board to be removed is touched by the grinder.

For the first repair, I tidy up where the new piece of plank has to start, removing nails and chamfering the edge so that the new nails will go through both the new and existing wood.

The new plank is a piece of basswood cut carefully to its final dimensions and planed to match the thickness of the original boards (¼” or 6 mm). The end of the new plank butts up again the existing board and laps over it with a chamfered edge to match the chamfer on the existing board.

When I am happy with the fit, I drill pilot holes for the canoe nails at the join and push them through from the outside.

Next, whilst pushing them firmly from the outside, I bend (dub) the nails over with a clinching iron.

I wet the outside of the new plank with hot water so the nails  sink into the wood without doing any damage.

Then, while holding a clinching iron on the bent nail inside, I hammer the outside until the nail is flush with the surface.

I repeat this along the top and bottom edge as well as two rows of nails in the stem. The end of the new plank extending past the stem is trimmed to complete the job.

I now turn my attention to the second plank repair. Because of what I’ve done already, I’m confident about the nailing procedure.  For this repair, I have to learn to fit a plank that bends in two directions.  In the factory, the planks would have been cut from patterns which (sadly) are not available to me.  When the flat shape had been cut, the outside of the plank was soaked with boiling water poured over it.  This swells the grain causing it to cup until the correct curve was reached.  Then, it was nailed into place.  My plan for the repair is to cut the plank oversize, hold it in place with a strap at each rib, then pour boiling water over it to cause it to curve.  As it bends, I should be able to tighten the straps and hold it in place until it dries.  I will then mark out the dimensions of the gap and work from there.

The first step is to fit basswood strips onto the outside surface of the exposed ribs. These spacers create a flush surface upon which to bent the oversized plank.  To make spacers, I cut strips and poured boiling water over them.  They bend into a suitable curve with very little pressure.  I then tape the spacers into place.

I chamfer the edges of the old plank so the chamfer on the new plank fits precisely and allows a line of nails to go through both.

To spread the tension from the straps evenly along the new plank, I put battens along the both the top and bottom edges.

I use steam from a wallpaper stripper rather than pouring boiling water to help the plank curve into shape.

Two people would have made things easier, but after holding the steamer in place for a minute or so, then moving it along the plank and holding it with my knee, I am able to pull the straps progressively tighter. I work my way up and down the plank until it is tight against the hull along its full length.  At both ends, I use ratchet straps and a couple of wedges to hold the curve tight to the hull.  I allow the plank to dry for a couple of days.

Before I remove the straps, I clamp some blocks under the plank and at the ends. These act as reference points so I can put the plank back in exactly the same place while I mark, trim and fit the top edge.

A planking gauge is used to mark the position of the gap’s edge even though the plank covers it and I can’t see.

The ‘L’ part of the gauge slides behind the plank and is moved along the edge of the gap while a pencil sits in the notch and draws a line.

Once the plank is marked, I use an apron plane to bring the plank dimension down to just outside the line. Then, a series of testing fitting, shaping, fitting, shaping until I have it just right.  Then, the inside edges at the ends were chamfered to match the existing planks.  The whole process takes about two hours before I am happy with it.  I run a line of masking tape above and below the gap.  On the tape, I mark where the ribs are so I can drill from the outside and place straps and blocks just to the sides of the ribs. This way, I can get the nails in, dubbed and clinched without worrying about the straps being in the way.

I nail the ribs, five in each, with a double row on the ends, then along the top and bottom edges into the battens – about 90 nails in all, drilled, pushed through, dubbed and clinched.

With the process honed, I turn to the Big One. I begin by making 16 basswood spacers for the ribs.

I steam and tape the spacers to the ribs.

I make two 12′ (3.7 meter) battens, arrange 16 straps and two ratchet straps. I make an oversized piece of basswood to fit over the gap.  I steam the plank and tighten the straps, then steam and tighten again.

I check to make sure it is all tight with no gaps showing, then leave it for a couple of days.

The marking, cutting, fitting, shaping routine is the same as for the second plank.

The final fitting and nailing proceeds smoothly.

It’s great how once you have done a job, you wonder what all the fuss was about. I suppose, at any time, I could have pulled a strap too tight and split a plank.  I could have planed too much off and left a gap.  A plank could have split while I was nailing.  If you need a plank for your board and batten canoe just let me know, I have a spare plank waiting in reserve.

mockup 02

The entire restoration process (including plank replacement) is described in my book – This Old Canoe: How To Restore Your Wood Canvas Canoe.
If you live in Canada, CLICK HERE to buy the book.
If you live in the USA, CLICK HERE to buy the book.
If you live in the UK, CLICK HERE to buy the book.
Si vous habitez en France, CLIQUEZ ICI acheter le livre.

If you have read the book, please post a review on Amazon, Goodreads and/or any other review site.

by Mike Elliott, Kettle River Canoes
email: artisan@canoeshop.ca

During the restoration of a wood-canvas canoe, it is rare to have to replace the entire stem in the canoe. However, when faced with the restoration of a canoe which is more than 100 years old, a new stem (or two) is more than likely going to be part of the project.

I restored a 1905 J.H. Rushton Indian Girl canoe. Both stems had extensive rot and one was broken in two places.  Rushton made his stems from a solid piece of rock elm.  Since this wood is nearly extinct now (thanks to Dutch Elm Disease), I used straight-grained ash 1″ (25mm) thick (at the lumber yard this is referred to as 4/4  ̶  pronounced four-quarters).

The first step is to remove the stems from the canoe. I use both a tack remover and a Japanese concave cutter bonsai tool to remove the fasteners without doing too much damage to the ribs, planks and stems in the canoe.

The next step is to create a bending form. Here, I present the dimensions of the bending form required for the Rushton Indian Girl.

It is comprised of three layers of 5/8″ (16mm) plywood. I ask my local building supply centre if they have any damaged sheets of plywood.  I can get all of the wood I require for a fraction of the cost of full sheets of plywood.  All three piece have the same curve but the centre piece of plywood has a longer base which clamps easily into a work-bench vice.

I start by placing the original stem on one piece of plywood and drawing the inside curve of the stem onto it.

I then keep the stem-top in the same location as the original while rotating the stem until the curve is about 3½” (9cm) greater than the original. The form shape is then drawn onto the plywood and is extended about 6″ (15cm) at both ends to accommodate the clamping system.

The form shape is cut with a saber saw or band saw. The first piece is then used as a template for the other two pieces.  Once assembled, the form is sanded more or less square with a belt sander or an angle grinder set up with a 24-grit wood grinding disk.  The final form is 1.875″ (48mm) wide.

The base-end of the stem is 1.1875″ (30mm) wide and 0.875″ (22mm) thick. I bend a piece of ash which is 1¼” (32mm) wide and 1″ (25mm) thick.  This allows me to shape an exact replica of the original.

The clamping system is attached to the bending form with enough space for the new wood and a backing strip. The new stem stock is soaked in water for four days, steamed for 60 minutes and bent onto the form where it remains for at least a week.  When removed from the form, the new wood will spring-back slightly and ought to come to the same shape as the original (or close enough).

The original stem is much more than just the curve in its profile. It is tapered at the stem-end, angled to accept planking and notched to accept ribs.  Draw the rough dimensions and contours onto the new stem (first with a pencil and then with a permanent ink pen).

Use a Japanese cross-cut saw or a dovetail saw to cut the sides of the rib notches at the correct angles and depths. Use a wood chisel and mallet to remove the bulk of the material in each notch.

Check the dimensions of each notch on the original and use the chisel to shave each new notch to the desired thickness.

Use an angle grinder set up with a 24-grit wood sanding disk to carve the desired angles and tapers into the new stem.

Work slowly and carefully with a random-orbital sander and 60-grit sandpaper (checking dimensions with calipers against the original) until the new stem is an exact replica of the original.

Turn the canoe upside down and use spring clamps to hold the new stem in place while you drill pilot holes for bronze ring nails to attach it to the ribs.

Use a cobblers hammer backed with a clinching iron to drive the ring nails tight.

Turn the canoe right-side up and sight down the centre-line. Position the stem so it is lined up straight down the centre-line and clamp it in place.  Pre-drill holes for 16mm brass canoe tacks and attach the new stem to the original planks.

Mark the height of the stem-top against the underside of the inwale-ends.

Use a Japanese cross-cut saw to trim the stem-top to its desired height. I cut it a little long and use a random-orbital sander to achieve a snug fit.

Attach the rest of the planking to complete the job.

mockup 02

The entire restoration process (including stem repairs and replacement) is described in my book – This Old Canoe: How To Restore Your Wood Canvas Canoe.
If you live in Canada, CLICK HERE to buy the book.
If you live in the USA, CLICK HERE to buy the book.
If you live in the UK, CLICK HERE to buy the book.
Si vous habitez en France, CLIQUEZ ICI acheter le livre.

If you have read the book, please post a review on Amazon, Goodreads and/or any other review site.

by Mike Elliott, Kettle River Canoes
email: artisan@canoeshop.ca

Water tends to collect in the ends of wood-canvas canoes when they are used on a regular basis. This moist environment creates perfect growing conditions for the fungi that cause wood rot.  I have described the process of rebuilding the rotted ends of a wood-canvas canoe in my book  ̶ This Old Canoe.  However, when the canoe is built with a stylish upward sweep in the sheer-line at both ends, the repair job is much more involved.  For this discussion, I rebuilt the rotted end of a 1967 Old Town OTCA sailing canoe with sponsons.

Often, the damage is not apparent until the end is taken apart. Only then can you see the rotted inwale-ends and stem-top.

In this canoe, the bow deck was also rotted in the end. There are many ways to approach this repair.  Sometimes, all that is required is the application of wood-hardener and two-part epoxy putty.  In other cases, a new tip of solid wood can be spliced into the original deck with a scarf joint.  However, the damage is most often so severe that an entirely new deck has to be made.  In many canoes with highly-curved ends, the solid wood decks (almost an inch thick) are bent to follow the curve in the sheer-line.

I have seen some people make a new deck by carving the curve into a piece of 8/4 (2″ or 5 cm thick) hardwood. Others laminate several thin slices of hardwood together on a form to create the curved deck.  In this example, I employed the same methodology used by the original builders  ̶  namely stem-bending the curve using a press.  The first step is to cut a new deck from a piece of 4/4 (1″ or 25 mm thick) hardwood (in this case I used white oak).

The set-up is comprised of the new deck steam-bent between two solid-wood bending forms. They are both fashioned from a number (in this case, four) of 2×8 pieces of spruce lumber sandwiched together into a 6×8 block (held together with 2½” deck screws).  The bottom block has the concave shape of the deck-bend cut into its top surface while the top block has the convex shape cut its bottom.

The curve required to achieve the correct bent in the replica deck is greater than the actual curve. This is due to the fact that a solid piece of wood will spring-back a little once the tension is removed in the press.  To save you the trial-and-error process involved in getting the proper curve, I present a diagram that will allow you to get it right the first time.

Pressure for bending the deck is generated with an automotive scissor-jack forcing the bending forms together in the middle of a press-frame constructed from 2×6 lumber. In this case, the inside dimensions of the press are 26½” (67.3 cm) high by 31″ (79.7 cm) wide.

The new deck is left in the press for a week to dry completely. When removed, the new deck has exactly the same bend as the original.  Once the deck is ready, new inwale-ends have to be spliced into the original inwales.  This will be discussed in part 2 of this blog.

mockup 02

The entire restoration process (including stem-top, inwale-end and deck repairs) is described in my book – This Old Canoe: How To Restore Your Wood Canvas Canoe.
If you live in Canada, CLICK HERE to buy the book.
If you live in the USA, CLICK HERE to buy the book.
If you live in the UK, CLICK HERE to buy the book.
Si vous habitez en France, CLIQUEZ ICI acheter le livre.

If you have read the book, please post a review on Amazon, Goodreads and/or any other review site.